Определение положения центра тяжести фигуры (сечения)

В этой статье посмотрим, как определяются координаты центра тяжести сложной фигуры — состоящей из простых. В задачах по сопромату часто приходится находить положение центра тяжести составных сечений, для дальнейшего вычисления моментов инерции и т. д.

Также часто, при изучении теоретической механики, студентам предлагается решить подобную задачу, и найти центр тяжести какой-нибудь фигуры.

Условие задачи

Предлагаю рассмотреть следующую фигуру:

Фигура, состоящая из нескольких простых фигур

В сопромате принято заштриховывать сечения тонкими линиями, вот так:

Штриховка на сечении, состоящем из нескольких фигур

В своих же уроках я буду использовать заливку. Так, штриховка не будет мешать наносить обозначения.

Разбивка сложной фигуры на простые

Как видишь, сечение состоит из прямоугольника, прямоугольного треугольника, четверти круга, а также имеет круглый вырез:

Разбивка сложной фигуры на простые и нумерация фигур

Отметим центры тяжести (С1, С2, С3, С4) каждой отдельной фигуры, с учётом справочной информации.

Открой эту страничку, и пока не закрывай, она нам ещё понадобится!

Указание центров тяжести простых фигур

Покажем вспомогательные оси (x0, y0) для всего сечения, которые будем использовать для нахождения положения центра тяжести (C):

Введение вспомогательной системы координат для всего сечения

Как определить положение центра тяжести?

Чтобы определить координату центра тяжести сечения, например, вертикальное расстояние от оси x0 до центра тяжести сечения (yc):

Указание координаты от вспомогательной оси до центра тяжести

Нужно статический момент сечения относительно этой вспомогательной оси (x0) разделить на площадь всего сечения (A):

Площадь всего сечения (A) найти просто – это алгебраическая сумма площадей всех фигур:

Статический момент сечения, относительно вспомогательной оси будет равен алгебраической сумме статических моментов каждой фигуры (с учётом знака):

где Ai – площадь отдельной фигуры;
yi – расстояние от центра тяжести отдельной фигуры до вспомогательной оси (x0).

Координата центра тяжести (xc), находится аналогично:

Определение площади сечения

Для начала предлагаю сделать самое простое, используя формулы, указанные на этой странице, найти площадь всего сечения (A):

Сечение, для которого рассчитывается площадь

Как видишь, круглый вырез, нужно учесть с «минусом», что очевидно.

Определение расстояний от вспомогательных осей до центров тяжести отдельных фигур

Найдём расстояния от вспомогательных осей (x0, y0) до центров тяжести отдельных фигур, опять же, используя нашу шпаргалку:

Определение статических моментов

Определяем статические моменты сечения относительно вспомогательных осей (x0, y0):

Важно! Статические моменты могут быть и отрицательными.

Определение координат центра тяжести

И, наконец, определяем положение центра тяжести всего сечения (C):

Покажем центр тяжести всего сечения (C):

Указание найденного центра тяжести сечения

Если остались какие-то вопросы по данному уроку, можешь смело задавать их в комментариях. Также, другие уроки, на сайте – ssopromat.ru, по определению геометрических характеристик, можешь найти здесь.

комментария 2

  1. Андрей:

    Практическая польза в чем?

    • Константин:

      Зная положение центра тяжести, можно рассчитать другие характеристики сечения: такие как, момент инерции, момент сопротивления и т. д., которые используются в инженерных расчетах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *